Freshwater Styles

Updated during December, 2023.

Warning! This article includes personal opinions and speculations!

Chapter shortcuts:

· Introduction to freshwater styles

· Great lake cichlids styles

· Tankbuster monster fishes styles

· Mini monster fishes & oddball fishes styles

· Killitank styles

· Livebearer styles

· Nano styles

· Resurrection jars & live aquatic food cultures styles

· Biotope styles

· Biotype, biotopy, or environment type styles

· Hardscape only aquascape styles

· Dutch planted aquarium aquascape style

· Nature aquarium, planted aquascape styles

· Paludarium styles

· Dirted aquarium styles

· Mud/clay/earthen pond style

· Modern pond styles

· Goldfishes styles

· Undergravel filter (UGF) styles

· Underground cave style

· DIY homemade elaborate backgrounds styles

· Factory made 3D backgrounds & inserts styles

· Suspended styles

· Bare bottomed styles

· Plastic fintastic styles

· Freshwater invertebrates styles

· Dwarf cichlids styles

· "Average" sized cichlids styles

· Hybrid fishes styles

· Transparent fishes styles

· Corydoras & similar catfishes styles

· Plecos & similar catfishes styles

· Loaches & similar fishes styles

· Barbs & danionins styles

· Rainbowfishes & blue eyes styles

· Saving endangered fishes styles

· Outro comments

Introduction to freshwater styles:

There are different styles of keeping freshwater aquariums and ponds.

Several main styles are based on different ways of thinking, that follow different philosophies and aim towards different goals. The main styles may focus on different aspects, on how to run the aquarium, on what inhabits the aquarium, and/or how the habitats are set up.

The main styles can be further divided into several branch styles, that may be more, or less, extreme. Some of the branch styles share parallel commonality traits, with branch styles from other main styles, and/or may sometimes be identical, making those branch styles part of more than one main style, in a multidimensional web of styles.

Aquarists may also choose to make their own combination styles. Parts of the ideologies from more than one main style, and/or branch style, can sometimes be combined inside the same aquarium, and/or using several connected aquariums, sumps, refugiums, special filtration systems etc.

Most freshwater styles usually have substrate/sand/gravel on the bottom, but there are exceptions. There are some filterless freshwater styles, but most freshwater styles use one, or more, types of filters, for example:

· External canister filters.
· Filter socks, or roller filters.
· Fluidized bed/bead filters.
· Hang on back (HOB) filters.
· Internal cartridge filters.
· Internal matten filters.
· Air driven box filters.
· Normal air driven sponge filters.
· Powerhead driven sponge filters.
· Trickle filters.
· Undergravel filters (UGF).

Different types of filters have their uses, in the hobby and the industry. Streamers, wavemakers and airstones in addition to filters, or as an alternative to filters, may also be used if the inhabitants prefer more water circulation and highly oxygenated water. Unfiltered freshwater styles with stagnant water also have their places. Most freshwater styles, usually, do not use capped dirt, but dirted aquarium styles do.

If it works, it's not an issue about who's doing it right, or who's doing it wrong. It's about recognizing that there are lots of different ways to do something. In some situations it is possible to combine different freshwater styles. Aquarists and other aquarium keepers/observers have different personalites and experiences. There are lots of different freshwater styles, that have potential to work, that can provide a healthy environment to live in, for fishes and other inhabitants to thrive.

Some aquarists are set in their ways and go all in with one style, or a few similar/compatible styles. Other aquarists remain much more open and like to use different styles for different projects, but it is still common for aquarists to have one, or a few, favorite styles.

Usually, something (either good, or bad) may happen, that from that point forward sets a psycological personal preference (or obsession etc.). This may last a lifetime in some people, or maybe only a short period of time, depending on the individual person's personality and what events may continue to develop. Interaction with other aquarists, visiting public aquariums, viewing impactful aquaristic videos, and/or reading aquarium books and so on, may either change, or confirm, your choice of favorite freshwater styles. You may also want to try experiments and tweaks to your own setups, to see what works best for you.

All freshwater styles don't work for everyone, on all occasions, in every circumstance. There are plenty of examples of people with bad experiences, from trying one, or several, freshwater styles. Such experiences, that unfortunately ended badly for them, often make those people afraid, and/or repulsed, by all similar freshwater styles, and/or the entire hobby and industry. In redeemable cases, some people may try other freshwater styles, or get some good advice from someone. Perhaps, those people may do a lot better with those other freshwater styles, or the advice may help them to succeed in becoming happy aquarists. However, in less fortunate cases, the people may give up, become bitter and, perhaps, start spreading anti petkeeping propaganda.

It is human nature to blame the freshwater styles when things go wrong, but sometimes its more of a compatibility issue, or an accident. Such issues and disasters may, or may not, have been preventable, and/or predictable, with common sense, and/or long time experience.

The various issues and disasters may be related to, for example:

  • Not understanding the basics of the nitrogen cycle.

  • Not understanding how gas exchange works in aquariums/ponds. (Especially oxygenation and aeration.)

  • The local tap water getting flushed with chemicals. (Chlorine/chloramines etc.)

  • Hurricanes/storms/flooding/snow that cause electricity black outs. (Power failure.)

  • Emersed grown plants that "melt" after a while, when planted under water, since they do this to change into submersed grown new leaves, to become better suited for the new conditions.

  • A neighbor that feeds the fishes way too much during a vacation.

  • A canister filter starts leaking, perhaps caused by a cat, or dog.

  • Accidentally buying sick/unhealthy fishes.

  • Predatory monster fishes eating their tankmates.

  • Tankbusters growing too big for their home.

Choosing one, or more, freshwater styles that are highly compatible with your local circumstances, your way of life and your personality, can help you succeed and feel more motivated as an aquarist and as a person.

I suggest to ask yourself:

  • What are your goals with the specific aquatic setup?

    Is it for the sake of your personal feelings, someone elses feelings, economical reasons, education, and/or fish breeding etc.

  • Which styles can help enhance feelings and emotions that you like?

    Happiness/joy, relaxation/tranquility, amazement/awe, satisfaction/contentment, and/or inspiration etc.

  • Which styles give you the best emotions when simply observing?

  • Which styles do you think fit your personality to maintain?

    Some people may enjoy pruning live plants and dosing plant nutrients meticulously. Other people may prefer tinkering with technical equipment. Breeders may enjoy purifying and/or creating color/fin varieties of fishes, and/or shrimps, by selecting/sorting the young as they grow and gradually develop, then spawning them as adults to continue with the next generation. You may be into doing something else, or perhaps prefer doing only a little maintenance, while letting nature take its course and do most of the job for you?

  • Which sudden "influences" can be expected during a few years?

    • Who takes care of your system if you get sick, or go on vacation?

    • Do you sometimes have weather disasters?

    • Do you sometimes have temporary tap/well water issues?

    • Are there any children, itchy fingered people, wild animals, and/or domestic animals, that may gain access to your system?

  • Which styles do you have a fair chance of succeding with?

    Take in consideration your budget, space available, prior experiences, electricity reliability, volume of water in the system, quality and quantity of water available for water changes, time constraints, surrounding temperature etc.

  • Do you enjoy difficult challenges, or do you prefer safer bets?

  • Which styles do you really want try, that you have not tried before?

  • Are there any styles you are currently using and want to continue using, or styles you used in the past that you want to try again?

Related external links and references to this chapter:

The chapters below describe examples of various freshwater styles.

Great lake cichlids styles:

Aquariums and ponds with great lake cichlids in the aquarium hobby/industry are often populated with cichlids from Lake Malawi, and/or Lake Tanganyka, and/or Lake Victoria, and/or various lakes in the African Rift Valley.

Central American cichlids from Lake Nicaragua and its surroundings may also be kepts in similiar ways, as the African cichlids mentioned above. Lake Nicaragua in Central America, although on a different continent, share some similar traits with the African Rift Valley lakes.

Some cichlids, usually males, may sometimes digg, make breeding pits, or excavate caves under rocks, or move sand from shells etc.

In aquariums, the cichlids may either be separated, or grouped, by size and compatibility, and/or their behavior and their preferred natural environment type, or may be separated by lake, or even separated by each specific location in a specific lake, that they originate from.

Some other fishes, for example catfishes, and/or loaches, and/or labeos, and/or eels, and/or puffers, may optionally also get to be permanent guests. Some of these permanent guests may originate from the great lakes, while some of them don't. A few cichlids from other places may also become tankmates, if they can adapt to similar water and are otherwise compatible.

  • Community Central American & African great lakes cichlids style.

  • Community Lake Nicaragua cichlids style.

  • Community Rift Valley & East African lake cichlids style.

  • Community Lake Edward cichlids style.

  • Community Lake Malawi cichlids style.

  • Community Lake Tanganyika cichlids style.

  • Community Lake Victoria cichlids style.

  • "Haps" cichlids style.

    Focusing on Haplochromis and similar cichlids from Africa.

  • Mbuna cichlids style.

    Focusing on mbunas from Lake Malawi.

  • Tropheus cichlids shoal/school style.

    Focusing on Tropheus from Lake Tanganyika.

  • Sardine cichlids shoal/school style.

    Focusing on Cyprichromis from Lake Tanganyika. This style is both a variant of dwarf cichlids style and also a variant of the great lake cichlids style.

  • "Shellies" style.

    Focusing on shell dwelling cichlids, and/or shell spawning cichlids. Most "shellies" originate from Lake Tanganyika and a few "shellies" originate from Lake Malawi. This style is both a variant of dwarf cichlids style and also a variant of the great lake cichlids style.

  • Peacock cichlid breeding group style.

    Focusing on keeping both males and females of a specific species/variant of peacock cichlid (Aulonocara) from Lake Malawi. Dominant adult males may sometimes become aggressive, both towards other males and females (if the females are not ready to spawn). It is, generally, better to keep the breeding group in a larger tank, with some hiding places and also be prepared to intervene. I suggest to be prepared to sometimes move fishes to an other tanks, if needed.

    It is your choice if you want to move the victim(s), or the aggressor. However, if you move a dominant male, if there is also one, or more, other adult males in the tank, one of those other males may take over as the new dominant male and color up in the tank. It may become problematic to reintroduce the old dominant male back into the tank again after that point. Apart from normal level of aggression, if a female is "holding" eggs or fry, since they are mouthbrooders, they may get bullied more than usual during that time of parental care, when they are more vulnerable because of lack of eating food during that time, which may make them weaker. Sometimes aquarists "strip" the females of their brood, other times they prefer to move the females with their brood to an other tank.

  • Peacock cichlids males style.

    Focusing on keeping only males of various colorful species/variants of peacock cichlids (Aulonocara) from Lake Malawi. When there are no females around, the behaviour of the males is, generally, less aggressive towards each other, making it easier to keep the males together without females. Adult male peacock cichlids are generally more colorful than female peacock cichlids. Dominant adult males are generally much more colorful than subdued/oppressed males. With only males in a tank, it is possible to keep different species of peacock cichlids together without accidental hybridization.

  • "Frontosa" shoal, Lake Tanganyika tankbuster cichlids style.

    Focusing on Cyphotilapia sp. from Lake Tanganyika. This style is both a specialized tankbuster style and also a variant of the great lake cichlids style.

  • Tanganyika tilapia, Lake Tanganyika tankbuster cichlid style.

    Focusing on Tanganyika tilapia (Oreochromis tanganicae) from Lake Tanganyika. This style is both a specialized tankbuster style and also a variant of the great lake cichlids style.

  • Giant cichlid, Lake Tanganyika tankbuster cichlid style.

    Focusing on giant cichlid (Boulengerochromis microlepis) from Lake Tanganyika. This style is both a specialized tankbuster style and also a variant of the great lake cichlids style.

  • Wolf cichlid, Central American tankbuster cichlid style.

    Focusing on wolf cichlid (Parachromis dovii) from Lake Nicaragua and surrounding lakes. This style is both a specialized tankbuster style and also a variant of the great lake cichlids style.

  • Petrochromis cichlids shoal/school style.

    Focusing on Petrochromis from Lake Tanganyika. Usually, a single species of Petrochromis is kept per tank. This style is both a specialized borderline tankbuster style and also a variant of the great lake cichlids style.

  • Community with large Malawi cichlids style.

    Focusing on several different species of large cichlids from Lake Malawi. This style is both a specialized borderline tankbuster style and also a variant of the great lake cichlids style.

Related external links and references to this chapter:

Tankbuster monster fishes styles:

Tankbusters are monster fishes that have potential to grow big/huge, and/or may be very predatory/agressive. As adults they do not fit into most normal sized tanks. Depending on the context, a monster tank can refer to an aquarium with monster fish(es), but alternatively it may also refer to a very big aquarium (a monster sized tank), or both references may be implied at the same time, which would make it a monster sized tank with monster fishe(es). Monster fishes in a pond may be called pond monsters, if they are among the largest fishes/animals in that pond.

Some young tankbusters grow up, from small to big, very quickly, while other tankbusters grow slower but eventuelly grow huge because of a long lifespan with steady growth over many years. Tankbusters normally grow big as long as no fatal accidents occur to them and they are provided enough appropriate food and good water quality etc.

A single big aquarium, and/or pond, is not always enough, when keeping tankbusters. Fishkeepers with several tankbusters often have an additional need for multiple grow out aquariums, quarantine tanks etc. There is sometimes "fish tetris" going on, which means moving fishes depending on their size, growth rate and temperament etc.

Fishes that get bullied, and/or become injured, may on occasion need to recover in a separate aquarium. The bullying can sometimes also be dealt with by putting the bully in a temporary "time out", by moving the bully into an emergency aquarium, or making a separated partition in the aquarium. Moving the bully to a bigger aquarium/pond may also eventually be needed, so plan ahead. If you don't have the space, try to seek help and advice from experienced monster fiskeepers, fish rescues, pet shops, and/or public aquariums.

Warning! Some species of monster fishes are banned/restricted, in several countries in the world and several states in the USA. Please do adequate research before you acquire any monster fishes.

Tankbusters in general are probably best kept by public aquariums, and/or extreme enthusiasts, with several large/huge aquariums, and/or big ponds, devoted to monster fishes. There are some exceptions, since some species can be kept temporarily, or for a long time, even by ordinary aquarists. However, there are also other species that are "very difficult/problematic" to take care of, and/or to transport.

In my opinion, even though it may be tempting to try, it may be "better" to avoid trying to keep "very difficult/problematic" tankbusters i captivity, for now, since the chances of success are low at the moment. Learn from other people's mistakes and maybe the situation changes after a few years, or decades, into the future. Progress from biological researchers, and/or wealthy fish enthusiasts, and/or technological progress, and/or shared knowledge from videos posted by fish rescues on YouTube, may perhaps find a way, eventually, though trial and error.

  • Community tankbuster style.

    Multiple different tankbusters can sometimes be kept together.

  • Freshwater stingrays, tankbuster style.

    Usually, focusing on species, color variants and hybrids of the genus Potamotrygon. Potamotrygon are originally native to South America, but, generally, the most desirable ones in the hobby/industry are spectacular color variants that have been developed by selective breeding in captivity.

    There are some other "freshwater" stingrays native to Asia. The ones native to Asia are not nearly as popular in the hobby/industry. Some species are still kept by stingray enthusiasts, but most of the species native to Asia may prefer brackish water, and/or grow too big to manage, and/or have dull colors, and/or have long fragile tails, and/or may have other issues that make them less suitable, or generally less desirable, to keep in captivity as pets, compared to Potamotrygon.

  • Giant gouramis, tankbuster style.

  • Oscar cichlids, "puppydog" tankbuster cichlid style.

    Focusing on species/variants of the genus Astronotus, native to South America, as interactive wet pets. There are many different color variants of Astronotus ocellatus that have been developed by selective breeding in captivity.

  • "Frontosa" shoal, Lake Tanganyika tankbuster cichlids style.

    Focusing on one, or more, species/variants of the genus Cyphotilapia. There are currently two scientifically named species and they are both native/endemic to Lake Tanganyika.

    1. One of the species is Cyphotilapia frontosa, commonly called frontosa / frontosa cichlid / front cichlid / humphead cichlid. Cyphotilapia frontosa is native/endemic to the northern half of Lake Tanganyika.

    2. The other species is Cyphotilapia gibberosa, commonly called gibberosa / gibberosa cichlid. Cyphotilapia gibberosa is native/endemic to the southern half of Lake Tanganyika.

    However, in Lake Tanganyika there are several local populations of both species. These local populations are (more, or less) closely related. It can be difficult to exactly identify them, but general appearance, color and full grown size can be slightly different, when comparing separate populations with eachother. In the aquarium hobby/industry there are some aquarists who diligently keep the wild caught populations and breeding lines separated from each other. Keeping a record of the initial location of where your Cyphotilapia originate from is generally recommended. There are also Cyphotilapia of undocumented origin, and/or various hybrids and mixed population variants.

  • Tanganyika tilapia, Lake Tanganyika tankbuster cichlid style.

    Focusing on Tanganyika tilapia (Oreochromis tanganicae) native/endemic to Lake Tanganyika.

  • Giant cichlid, Lake Tanganyika tankbuster cichlid style.

    Focusing on giant cichlid (Boulengerochromis microlepis) native/endemic to Lake Tanganyika.

  • Wolf cichlid, Central American tankbuster cichlid style.

    Focusing on wolf cichlid (Parachromis dovii) native to Lake Nicaragua and surrounding lakes.

  • Turquoise cichlid, Central/South American tankbuster cichlid style.

    Focusing on turquoise cichlid / umbee cichlid (Kronoheros umbriferus) native to eastern Panama and central and western Colombia.

  • Red terror, South American tankbuster cichlid style.

    Focusing on red terror / guayas cichlid / festae cichid (Mesoheros festae) native to Pacific coastal rivers in Ecuador and northern Peru.

  • Basses, and/or peacock basses, tankbuster style.

  • Varius large eels, tankbuster style.

    Focusing on one, or more, big/long eel-shaped fishes, for example:

    · Anguilla anguilla   (European eel)
    · Gymnothorax polyuranodon   (Freshwater moray)
    · Mastacembelus armatus   (Zig-zag eel)
    · Mastacembelus erythrotaenia   (Fire eel)
    · Synbranchus marmoratus   (Marbled/marmorated swamp eel)

  • Electric eels, tankbuster style.

    There are currently three recognized species of electric eels:

    · Electrophorus electricus   (The most well known electric eel.)
    · Electrophorus varii   (Vari’s electric eel)
    · Electrophorus voltai   (Named in honor Alessandro Volta.)

  • Large electric catfishes, tankbuster style.

  • Huge gluttonous monster catfishes, tankbuster style.

    Focusing on giant monster catfishes, for example:

    · Bagarius yarrelli   (Goonch / giant devil catfish)
    · Brachyplatystoma filamentosum   (Piraíba)
    · Brachyplatystoma rousseauxii   (Gilded catfish / dourada)
    · Pangasius sanitwongsei   (Giant pangasius / paroon shark)
    · Silurus glanis   (Wels catfish)
    · Wallagonia leerii   (Great Tapah / helicopter catfish)
    · Zungaro zungaro   (Gilded catfish / jau / manguruyu / black manguruyu)

  • Large gluttonous monster catfishes, tankbuster style.

  • Large plecos style.

    Focusing on big suckermouthed armored catfishes native to South America. Most species of the family Loricariidae stay small/medium sized, but some species are known to grow significantly larger, for example:

    · Acanthicus adonis   (Adonis pleco)
    · Acanthicus hystrix L155   (Lyre tail pleco)
    · Hypostomus luteus   (Golden sailfin pleco)
    · Hypostomus plecostomus   (Plecostomus)
    · Pseudacanthicus pirarara L025   (Scarlet cactus pleco)
    · Pseudacanthicus pitanga L024, LDA118   (Red fin cactus pleco)
    · Pseudacanthicus sp. L063   (Brown finned cactus pleco)
    · Pseudacanthicus sp. L185   (Evil cactus pleco)
    · Pseudorinelepis sp. L095   (Orange cheek pinecone pleco)
    · Pterygoplichthys gibbiceps L165   (Leopard sailfin pleco)
    · Pterygoplichthys joselimaianus L001   (Gold spot sailfin pleco)
    · Pterygoplichthys pardalis   (Amazon sailfin pleco)
    · Panaque armbrusteri L027, LDA077   (Tapajos royal pleco)
    · Panaque sp. L191   (Dull eyed royal pleco)
    · Panaque nigrolineatus L190   (Royal pleco)
    · Panaque nigrolineatus laurafabianae L330   (Watermelon pleco)
    · Panaque schaeferi LDA065, L203   (Titanic pleco)
    · Panaque titan L418   (Shampupa royal pleco)

  • Pacus, tankbuster style.

  • Piranhas school, tankbuster style.

  • Arrowanas, tankbuster style.

  • Datnoid (Datnioides), tankbuster style.

  • Wolf fishes (Hoplias), tankbuster style.

  • Arapaimas, tankbuster style.

  • Gars, tankbuster style.

  • Lungfishes, tankbuster style.

  • Large knife fishes, tankbuster style.

  • Large freshwater pufferfishes, tankbuster style.

    Focusing on big puffers, or a single puffer, for example:
    · Tetraodon lineatus   (Fahaka pufferfish)
    · Tetraodon mbu   (Mbu pufferfish)
    · Tetraodon pustulatus   (Redline pufferfish / Cross River pufferfish)

  • Large pike cichlids, tankbuster style.

  • Large bichirs, tankbuster style.

  • Large snakeheads, tankbuster style.

Related external links and references to this chapter

Mini monster fishes & oddball fishes styles:

Mini monster fishes don't grow extremely big, like tankbusters do, but some mini monster fishes may still act like bullies, and/or may be very gluttonous/predatory. As adults they may still fit into medium/large sized aquariums. However, they may perhaps not be considered good tankmates with small community fishes, since the mini monster fishes may view them as prey. Mini monster fishes may perhaps, or perhaps not, be good tankmates to other fishes. Often it may depend on if a mini monster fish can, or can't, fit a specific community fish into its mouth, or may, or may not, view that fish as prey, or competition for dominance.

"Strange" fishes out of the ordinary, that seem very odd, unusual, and/or mind-boggling to most people, can be called oddball fishes.

Oddball fishes do not have a size requirement, or size limit. However, this chapter (that you are reading now) will not focus on tankbuster oddball fishes, or nano oddball fishes, or transparent oddball fishes, or oddball loaches, since they are instead included in other chapters, but some of the links and references may still include some of them.

There is a generous overlap between mini monster fishes and oddball fishes. Many, but not all, mini monster fishes can also be called oddball fishes, but there are also oddball fishes that are not mini monster fishes.

Some mini monster fishes, and/or oddball fishes, can be kept in community aquariums, while others are better kept alone, or only together with robust tankmates.

Mini monster fishes and oddball fishes may, or may not, have special needs regarding feeding, and/or other special needs.

Some mini monster fishes and oddball fishes may superficially resemble something else, such as the looks of larger well known tankbusters, or leaves, or various animals, or mythical creatures such as dragons, but they may not always behave in the way you might expect. If you love monster fishes, but don't have enough space to keep adult tankbusters, then mini monster fishes, and/or oddball fishes, may, perhaps, be the way to go as smaller alternatives.

Warning! Some species of mini monster fishes are banned/restricted, in several countries in the world and several states in the USA. Before acquiring mini monster fishes, make sure they are legal to keep in the part of the world where you live.

  • Various mini monster fishes, community style.

  • Various oddball fishes, community style.

  • Gulper catfish (Asterophysus batrachus) style.

  • Small/medium sized electric catfishes style.

  • Small/medium sized predatory/scavenging catfishes style.

    · Bloch's catfish   (Pimelodus blochii)
    · Pictus cat / pictus catfish   (Pimelodus pictus)
    · Smaller squeakers and upside-down catfishes.   (Mochokidae)

  • Bucktooth tetra (Exodon paradoxus) style.

  • African freshwater butterfly fish (Pantodon buchholzi) style.

  • Small/medium sized freshwater elephantfishes (Mormyridae) style.

    · Blunt-jawed elephantnose   (Campylomormyrus tamandua)
    · Peters' elephant nose   (Gnathonemus petersii)

  • Small/medium sized headstanders (Anostomidae) style.

    · Marbled headstander   (Abramites hypselonotus)
    · Spotted/pearl headstander   (Chilodus punctatus)
    · Striped headstander   (Anostomus anostomus)
    · Ternetzi headstander   (Anostomus ternetzi)

  • Hingemouth (Phractolaemus ansorgii) style.

  • South American leaffishes (Polycentridae) style.

  • Climbing gouramies / climbing perches (Anabantidae) styles.

    · Leopard bush fish   (Ctenopoma acutirostre)

  • Clouded archerfish (Toxotes blythii) style.

  • Small/medium sized freshwater puffer fishes style.

  • Small/medium sized knife fishes styles.

    · African brown knifefish   (Xenomystus nigri)

  • Small/medium sized pike cichlids (Crenicichla) style.

    · Regan's pike cichlid   (Crenicichla regani)

  • Small/medium sized polypterids (Polypteridae) style.

    · Some smaller species/subspecies of bichirs.   (Polypterus)
    · Ropefish / reedfish   (Erpetoichthys calabaricus)

  • Dwarf snakeheads style.

  • Gudgeon style.

Related external links and references to this chapter:

Killitank styles:

Some killies may be kept in community aquariums, but most species of killies are best kept one species to each tank. Most killifish enhusiasts develop multiple tank syndrome (MTS). Breeders can send eggs through the "snailmail" to each other. Spawning mops, made from acrylic yarn and a floating cork (or a piece of styrofoam), is commonly used for breeding killies in captivity. The killies may also choose to spawn among the plants, peat, leaves, or coconut husk fibers etc.

It is strongly recommended that the tanks should be covered somehow, to prevent the killies from jumping out.

A few of the commonly available killies in pet stores:

· Blue lyretail (Fundulopanchax gardneri)
· Clown killi / banded panchax (Epiplatys annulatus)
· Golden wonder killifish (Aplochelius lineatus "gold")
· The common lyretail (Aphyosemion australe)

Killitank branch styles:

  • Densely planted killitank style.

    Some aquariums with killies are set up with very dense plantation, usually with java moss, or similar plants. Usually, the plants fill/cover about 80 percent of the tank water volume.

  • Blackwater killitank style.

    Some aquariums with killies are set up with fallen leaves, peat and/or coconut husk fibers. This style usually has a strong yellow/brown hue to the water, due to the tannins.

  • Tanganyika killitank style.

    Aquariums with Tanganyika killifish (Lamprichthys tanganicanus) are usually set up with plenty of flat stones, since the females prefer to scatter their eggs in stone crevices when they spawn, although java moss may suffice as a substitute. The water and environment share similarities with aquariums for cichlids from Lake Tanganyika.

Related external links and references to this chapter:

Livebearer styles:

Endler's, guppies, mollies, swordtails, platies, limias etc. Most livebearer enhusiasts develop multiple tank syndrome (MTS), keeping and breeding different color varieties, fin varieties, wild strains, or mutts, hybrids etc.

Related external links and references to this chapter:

Nano styles:

Small aquariums are usually called nano tanks, or nano aquariums, when the inhabitants in them also remain small. Nano fishes is a general stereotype of small fishes, which do not grow as large, even at adult age, as most other common aquarium fishes. Nano fishes can be kept either in nano tanks, or in medium sized tanks, or in larger tanks, or in ponds etc.

It is generally not recommended to keep nano fishes together with larger fishes that may eat them, or bully them. There are some exceptions, since some large fishes don't seem to bother with adult nano fishes.

If you want to breed and raise nano fishes, then their eggs, and/or fry, should be taken into account, when selecting tankmates. Otherwise, the eggs, and/or fry, may be seen as food by hungry/aggressive tankmates.

Various small invertebrates (such as for example small shrimps, and/or snails), can be kept by themselves, or together with nano fishes, in nano tanks, or in tanks of other sizes.

African dwarf clawed frogs can be kept by themselves, or together with most adult nano fishes, in nano tanks, or in tanks of other sizes. However, fry and very small nano fishes may get eaten by the African dwarf clawed frogs. Make sure that the lid on the tank is very secure, as the African dwarf clawed frogs may try to escape.

Related external links and references to this chapter:

Resurrection jars & live aquatic food cultures styles:

A typical aquatic resurrection jar is a container with water, organic material and various organisms. After collecting some material in nature (or from another source), including a starting culture of organisms, the organisms can then be cultivated in the container. As time moves on it can be interesting to see what grows up and/or multiplies in the container, both short term and long term.

After a period of time, the organisms may be used as live food for fishes and/or food for other aquatic pets. People may also like to study the whole process and the organisms for other reasons.

Some peple create closed sealed aquatic ecospheres, where the objective is to let a balanced ecosystem develop without any outside interference, other than light/darkness and heat/cold from the outside, unless there is some type of emergency etc. If you decide to not limit yourself in that way, you have freedom to do whatever types of adjustments you want at any time. Lessons in biology and ecology can be learned either way, from observing the development and theorizing about the processes involved.

A different type of developing live aquatic cultures is by tubbing. It is possible to start with a tub/bucket/barrel of simply clean water and watch the process go through several development stages, or you can choose to set up the tubs in other ways according to your preferences and what organisms you hope/plan to cultivate. As an experiment, you may place one, or more, open tubs outside. Observe and study what falls into the tubs and how aquatic life arrives and develops in the water. However, if you live in a place where this might pose a danger, such as if there are mosquitos carrying malaria, then it is probably better not do this.

Some of the organisms may perhaps grow large enough to be easily identified and studied without using any equipment. The smaller organisms may require tools such as (for example) a magnifying glass, or a microscope, or a camera with a macro lens, to study them in detail.

The cultures may also be further sorted and purified in several stages over time, if the goal is to to grow and multiply a special type of organism, while avoiding others. Sometimes, it is also a good idea to separate different types of cultures, if they represent organisms from different steps of the food chain. One type of organism may be needed to regulary feed to the other, to provide a steady live food supply.

If you intend to utilize aquatic resurrection jars (or other live aquatic cultures), to feed small fish fry with live food, then try to avoid species among the organisms that may become a danger to the fish fry. To do so, you can start by sieveing/sifting the organisms and water through sieves/nets/strainers. Use different sized holes/mesh sizes to searate the different sizes of organisms. Arrange the organisms by size and/or specifically collect congregations of specific organisms. A baited trap, or a small spot of light in darkess, or a turkey baster, or a small net, or a siphon using a narrow hose into a separate container, are some of the commonly used methods to collect such congregations.

Related external links and references to this chapter:

Biotope styles:

Please, notice the second "o" in the word biotope. All fishes and plants need to originate from the same very limited geographical region. (For example from the same location next to a specific part of the coast in a specific lake, or the same part of a river system etc.) They should all together, as closely as practially possible, mimic a natural wild population in a specific real biotope in nature. Some biotope enthusiasts go even further, by choosing only specific snails, shrimps, frogs, fallen terrestial plant leaves and submerged wood, stones, sand, clay and so on, that all originate from the same geographical place.

Some biotope enthusiasts and aquarists travel and go on collection/observation trips in the wild, to personally experience real underwater biotopes. If you prefer not do so yourself, there may be photos in books and magazines, documentary video footage in nature movies and clips on YouTube, from various real underwater biotopes, that you may want to study. However, these might be generally in favor of underwater biotopes with unusually good visibility and preferably relatively easy access.

Natural biotopes in the wild usually change troughout the seasons, it may be a little, or it may be a lot. Some species migrate, or have a short life cycle, and/or have found various interesting ways to adapt, reproduce and evolve as species. Many places in the wild (and time periods of specific places) remain mostly undocumented, if they are not suited for photography/videography due to low visibility underwater, or various dangerous/troublesome/expensive circumstanses.

In a biotope aquarium, the water parameters, water flow, water tint (color hue) and perhaps suspended solids, should preferably somewhat mimic the original biotope in the wild. However, you don't always need to go all the way. For example, if the biotope in the wild has a strong tint in the water, then a moderate tint may be enough in the aquarium, so you can still see your aquatic inhabitants. The pH of the water in a blackwater biotope in the wild may periodically be very acidic, but a moderately acidic pH is usually safer in a blackwater biotope aquarium, when mimicking that same biotope.

Try to find out what important/interesting factors other people may have discovered, both from expeditions into the wild and from keeping specific fishes, amphibians, plants, algae, invertebrates (and so on) in captivity. Then, make up your own mind how to arrange your freshwater biotope set-up. Trial and error may sometimes still be a part of the experience.

If practically possible, it is an authentic advantage (but not a necessity), to use algae and other microorganisms collected from the same original biotope. Biotope aquascapes should mimic nature and look very realistic with a bit of randomness and, usually, some algae and decaying plant matter, if it also exists in the specific natural biotope being simulated.

Related external links and references to this chapter:

Biotype, biotopy, or environment type styles:

Please, notice the letter "y" in the words biotype and biotopy. There is confusion about exactly what to call this niche of naturalistic environment type concept. The words and terms to describe this concept in English are not fully mainstream popularized and fixed yet. Unfortunately, the words to call this concept in English can be very confusing. It is because of other biological meanings of the same words and also other words that sound almost the same.

Anyway, in a biotype aquarium, biotopy aquarium, environment type aquarium, ecological aquarium, ecological niche aquarium, naturalistic ecology type aquarium, general ecological habitat type aquarium (or whatever you prefer to call it), atleast the majority of the fishes and plants should preferably originate from a similar type of water habitat, with similar type of water parameters and generally a similar naturalistic ecological habitat niche environment type theme in the wild. If they do not originate from such an environment, it may still be allowed to include them as replacements, if they look, and/or behave, somewhat similar to other species that may live in the type of environment you want to simulate/emulate.

The idea is to stock and decorate a biotype aquarium in a way so that it shares some similarities with a biotope aquarium, even though it may not officially be eligible to be called a biotope aquarium, or does not stricty follow biotope aquascaping competition rules. A biotype aquarium may suffer severe point deduction, or disqualification, as penalty for geographically linked deviations, if submitted to a biotope aquascaping competition. If it would not suffer any such point deduction, then it is a biotope aquarium and it is then prefered to call it that, instead of a biotype aquarium, since a biotype aquarium is less distinctly geographically defined, compared to a biotope aquarium. A "perfect" biotope aquarium could, perhaps, be described as a very geographically narrowed down and specialized version of a biotype aquarium.

There is no definite requirement for a biotype aquarium to look good (aesthetically pleasing to the eye), but there is also no rule against it, so each aquarist is free to choose either way. The purpose of a biotype aquarium may differ depending on your priorities. If the goal happen to include having a beautifully planted layout, it may share many commonalities with a nature aquarium, planted aquascape style. It is possible for a biotype aquarium to also be a nature aquarium. However, a biotype aquarium may not always use aquarium plants, especially if it is intended to mimick an environment type that may perhaps be without plants in the wild. If the main purpose of the biotype aquarium is to breed fishes, their natural spawning behaviour may get triggered, thanks to the similar conditions in the biotype aquarium compared to their natural environment in the wild.

In a biotype aquarium there is not much emphasis on whatever actual geographical position the inhabitants originate from, unless you yourself choose to limit yourself to make it so. Fishes, plants, amphibians, invertebrates (and so on) can be mixed, if they all originate from a general type of natural habitat environment, that somewhat resemble each other's natural environment, even if they originate from different rivers, lakes, or continents. However, if you so choose, you can optionally limit yourself to a specific continent, lake, river system, or other general broad geographical zone, but the idea is that the inhabitants do not have to originate from the same exact location. It is your own choice, if you volontarlily want to limit yourself geographically (and if so, to what extent, or if you allow a few exceptions), or if you prefer to remain free of such constraints, when setting up and stocking a biotype aquarium.

For example, in a very big lake there are probably many distinctly separated biotopes. (Isolated habitats, in specific parts of the lake.) In a biotype aquarium, it is permissible to mix species, or local population variants, from different parts of the lake, that do not naturally live together in the same specific biotope location in the wild. It is ok to mix fishes from different biotopes in a biotype aquarium, as long as they originate from a generally similar type of environment. A few exceptions can also be allowed, to accomodate fishes that may not fit this profile, as long as they can adapt to living in those conditions in the aquarium.

The environment in a biotype aquarium should, preferably, somewhat visually resemble that same mutual general type of natural environment. There is no geographical emphasis on the origin of the sand, gravel, wood, and/or other decorations. It is possible to keep man made breeding strains and hybrids in a biotype aquarium, even though they may not exist in nature. It is ok, as long as their different ancestors originated from that similar type of environment, but a few exceptions may also be allowed. It is generally preferable if most of the fishes and other inhabitants look somewhat natural, but it is not strictly necessary, so exceptions can be allowed.

Parameters such as the temperature, waterflow and general environment type can be important. It is possibe to mix tropical and subtropical species, but it is generally not recommended. Most subtropical species have adapted to a cool season during part of the year, as part of the cycle of the seasons, but subtropical species can usually coexist with tropical species, in warm conditions, during the warm season, if there is high enough oxygen gas O2 concentration in the water.

Without chilly water for part of the year, subtropical species may suffer various ailments and behavioral consequenses. It may depend on the exact species, gender and age, what they may become susceptible to, but it may eventually include reproduction related problems, higher risk of contracting diseases and shortened lifespan etc.

However, some species that were originally subtropical have been raised in tropical conditions on fishfarms, or may have lived as feral populations in tropical environments, for many generations. This may lead to them partially adapting/evolving to survive in tropical conditions. The same can be said for species with a broad natural distribution range, that may span both tropical and subtropical environments, since there may be local adaptations, within the species, that make some individuals in those populations better suited to living in the local conditions. Populations of migratory species may also be generally more accomodating to changing different conditions, than populations of isolated stationary species.

General environment types could be, for example:

· Fast flowing stream in tropical environment type.
· Fast flowing stream in chilly subtropical environment type.
· Slow flowing stream in tropical environment type.
· Slow flowing stream in chilly subtropical environment type.
· Stagnant blackwater with leaves in tropical environment type.
· Stagnant blackwater with leaves in chilly subtropical environment type.
· Reed swamp with twigs in tropical environment type.
· Reed swamp with twigs in chilly subtropical environment type.
· Clear spring with lilypads in tropical environment type.
· Clear spring with lilypads in chilly subtropical environment type.
· Creek flourishing with plants in tropical environment type.
· Creek flourishing with plants in chilly subtropical environment type.
· Flooded rainforest with tree trunks in tropical environment type.
· Slow flowing river with driftwood in tropical environment type.
· Slow flowing river with driftwood in chilly subtropical environment type.
· Highly aerated waterfall in tropical environment type.
· Highly aerated waterfall in chilly subtropical environment type.
· Sandy shallow beach in tropical lake environment type.
· Sandy shallow beach in chilly subtropical lake environment type.
· Deep water rocky boulders in tropical lake environment type.
· Deep water rocky boulders in chilly subtropical lake environment type.
· Hard alkaline water in warm/hot soda lake environment type.

Example of an environment type set up, with geographically mixed origin:

Loosely based on a generic slow flowing river with driftwood in tropical environment. Populated with various river dwelling fishes, originating from Central Asia, West Africa, Eastern Australia and South America. Planted with plants from Southern Europe and Cental America. The smooth gravel/sand on the bottom may come from the country where you live. Decorated with driftwood from North America and rocks from South East Asia. A few fallen leaves and other botanicals collected from your local forest may be added every few weeks.

Warning! Biotype aquariums are, unfortunately, almost always "inaccurately" labeled as biotope aquariums. This confusion is widespread, but especially common when a biotype aquarium is inspired by a specific biotope, lake, or river system. Most of the fishes may come from generally the same geographical area. However, unless ALL of the specific fishes in the aquarium can actually be found living naturally together in the wild, preferably before modern humans started moving fishes all around the world (leading to local changes and establishing invasive feral populations etc.), it is not really a biotope aquarium, from a strict point of view. Even if all fishes accurately originate from the same place, if ALL the species of plants used in the same aquarium can't also be found in the same specific place in nature as those fishes, then the aquarium is still not really a biotope aquarium. If the hardscape materials used to scape the aquarium does not at all visually resemble what can be found in the same natural biotope, that the fishes and plants originate from, it is also questionable if the aquarium is eligible to be called a biotope aquarium. A partially specialized biotype aquarium may, perhaps, be described as:

· Biotope inspired biotype aquarium.
· Biotype aquarium inspired by natural biotope(s).
· Environment type aquarium inspired by natural habitat(s).

Related external links and references to this chapter:

Hardscape only aquascape styles:

In my opinion, a hardscape only aquascape is an aquascape that is designed to look good, like a work of art, without showing living submersed grown plants. Usually, naural materials such as rocks, sand, gravel and driftwood can be used, but there is leeway for using artificial replacements. The materials are carefully chosen, to create a harmonious visual appearance combined together. It is highly preferable to choose only one general type of rock, where all rocks are matching in structure and color, but vary in size. Optionally, inanimate botanicals may be incorporated, such as leaf litter, alder cones, bamboo pipes etc.

Aquarium Design Group (ADG) is a company in Texas, USA. Aquascapers from ADG has taken their vision, of a hardscape only aquascape style, into the extreme in reality. ADG made a world wide impact and started influencing the aquascaping community, ever since the first photos from some of their work, using the concept of a hardscape only aquascape style, were published.

To plant enthusiasts, a hardscape only aquascape may at first glance seem like an unfinished aquascape. Many aquascapers may have their green thumb itching to put plants in such an aquascape. However, if a hardscape only aquascape is designed properly, that urge may subside, somewhat, after looking at the hardscape only aquascape for a while and properly feeling and appreciating the basic raw hardscape only wibe. It probably helps if you have prior experience from enjoying unplanted biotope styles, and/or unplanted biotype styles.

Plastic plants, and/or other plastic decrations, are up for debate. Plastic decorations may, or may not, be considered to be hardscape, depending on your point of view. However, if plastic plants are used, it will no longer be a "pure" hardscape only aquascape style, but a mixed combination variant with the plastic fintastic styles. Sometimes, ADG may publish photos, and/or videos, of more than one version of almost the same aquarium aquacape. One version may show how it looks without the use of any plastic plants (hardscape only aquascape), but then an other version shows how it can look with plastic plants. Sometimes, ADG may show multiple versions, of how the general impression of the aquascape may change, using different colors of the plastic plants in different photos. In practicality, it also makes sense to be able to change the optional plastic plants whenever you want, but keep the hardscape intact, perhaps to change the aquascape in tune with seasonal changes throughout the year, or adapting the aquascape to a client's wish, and/or matching the colors of the surrounding room, at a specific location.

If you are ok with using a mix of artifical and natural hardscape materials, other than plants, it is also possible to combine hardscape only aquascapes with artificial backgrounds, and/or inserts, either factory made, or DIY homemade. However, it is also popular to use hardscape only aquascapes as see-through room dividers, without a "normal" traditional background. (However, one, or more, sides may be covered, and/or a big insert, and/or big logs, and/or stone boulders, may serve as visual blockage, to help the fishes feel safe.) It is also popular to use various diffused lights to light up a plain background, sometimes using a gradient color scheme, to simulate a sunrise, mid-day and sunset throughout the day.

Emersed living plants are also up for debate, since they may, perhaps, only have their roots somewhere in the system. (Making it an aquaponics system.) It may be "cheating" and not a "pure" hardscape only aquascape style, to use live plants with roots in the water, but it is a great way to remove nitrates and phosphates from the system. If you do not want the live plant roots visible in the aquarium, it is possible to hide and, optionally, keep them in a separate tank, for example in a sump. Theoretically, you could also keep submersed plants, or floating plants, in an other tank, but connected to the hardscape only aquascape, to help remove nitrates and phosphates. Algae scrubbers may also be an alternative means of extracting nutrients from the water, although algae scrubbers are more commonly used in marine saltwater setups, they can also be used in freshwater.

Hardscape only aquascapes often use various algae eaters to keep the algae growth in check, but may also have subdued light, compared to planted aquariums. More frequent water changes, and/or carefully chosen aquarium algaecides, may be used with caution (for spot treatment, and/or dilluted in the whole aquarium), if algae, and/or cyano bacteria, becomes a big problem. Using some type of UVC-sterilizer, ozone reactor, or copper electrolysis, that the aquarium water can pass through, may help to keep water cloudiness away and help deal with some types of algae, but they may also have side effects. There are also various types of specialized filter medias that may be of assistance, but it is often not very cost efficient and may sometimes have side effects, or the intended effects may perhaps not be scientifically confirmed by independent sources, so you may want to do some investigation before buying.

The bioload from the inhabitants, in a hardscape only aquascape aquarium, may increase the nitrates into dangerous levels faster, compared to the exact same bioload in a planted aquarium, where the plants consume nitrates. There is a risk involved, if you do not want to do frequent, and/or large, waterchanges, or use other means to regulary, or continiously, remove nitrates from the system in a hardscape only aquascape aquarium. It is recommended to keep the bioload down to a manageable level, for example, by generally keeping a lower number of individual fishes, or choosing smaller fishes, in the same volume of water, compared to a planted aquarium. Some people may instead choose to go with a bigger aquarium, to still be able to keep their desired number and sizes of fishes, since a large (or huge) aquarium also helps to keep the water quality from deteriorating too fast, compared to a smaller aquarium. If you connect a hardscape only aquascape aquarium to a modern pond and let the water flow through the system, it may help with keeping the water quality more steady.

Some positive aspects of a hardscape only aquascapes, without any type of live plants (not even their roots) inside the aquascaped aquarium:

  • You can put plant eating fishes in the aquarium, without having to worry about them eating your live plants.

  • You are not bound by the temperature range favored by plants, so you do not have to compromise if your favorite fish prefers a different temperature than the plants.

  • There are less hidden places for uneaten food and waste to accumulate, compare to an aquascaped planted aquarium, making it much easier to clean.

  • You do not have to prune, and/or replant, any plants.

  • You can get by with lights that use less electricity, compared to lights on high-tech planted aquariums with very fast growing plants.

  • You do not need to add fertilizers, or CO2 to the water. (However, very advanced aquarists may still choose to add small doses of specific minerals, and/or CO2 if they want to encourage the growth of specific types of algae in the aquarium, while also trying to inhibit the growth of other types of unwanted algae.)

Related external links and references to this chapter:

Dutch planted aquarium aquascape style:

The Dutch style of planted aquariums is also known as Holland aquarium, Dutch style aquascape, Dutch plant aquarium, Dutch style and Dutch aquarium etc. It was first popularized in the 1930's in the Netherlands.

Fast growing plants will require frequent trimming and sometimes also replanting. As time goes by, assuming the aquascaper/aquarist worked skillfully and diligently, the Dutch style aquascape may resemble a miniature version of a classic European royal garden, or a well kept public planted park.

Traditionally, there is usually no wood, no large stones and no other decorations used, although exceptions can be made. Plants with contrasting colors, different heights and different leaf textures, will together form a very striking, but still harmonious, living artwork.

Some fishes, usually shoaling/schooling fishes, may be added to add more life and movement in the water. A cleaning crew of snails, shrimps and algae eating fishes can help keep the aquarium looking good between maintenance days.

The plants can traditionally be planted in small sized gravel, with clay, or laterite. However, in modern times many aquascapers use aquasoil (aquarium soil), and/or different aquarium substrate.

Plant fertilizers are regulary dosed, usually including nitrogen, phosphorous, potassium, magnesium, iron and minerals. The plants are frequently inspected, to see if they exhibit signs of lacking any specific nutrients, or exhibiting algae growth etc. In modern times, to increase plant growth and give the plants an advantage when competing against algae, extra CO2 is usually added/dosed/injected.

Related external links and references to this chapter:

Nature aquarium, planted aquascape styles:

Invented and made popular by Takashi Amano, nature aquarium planted aquascapes often resemble miniature Asian gardens, and/or miniature terrestial landscapes (sometimes, but not always, in a diorama style). The aquascapes often, but not always, make use of both plants and hardscape (wood, special decorative stones, steep slopes etc.), usually in visual harmony. Rocks in the aquarium may correspond to boulders and mountains in terrestial landscapes.

There is often use of layout framing concept rules, related to landscape photography and art, such as, for example, the golden rule, or the rule of thirds. Often (but not always) a path, or a few paths, may guide the viewer's sight and mind through the aquascape, into an imaginary horizon, around a bend, or over a mound, or through a tunnel. This helps the observer find meaning in the aquascape and resonates with the East Asian philosophy about the Tao, also know as the Dao, or the Way.

Amano shrimp (popularized by Takashi Amano) and a few carefully selected species of algae-eating fishes are normally added as a cleaning crew. Snails and various species of shrimps, may join the cleaning crew.

To increase plant growth and give the plants an advantage when competing against algae, CO2 injection is usually used. The use of regulated CO2 injection into planted aquariums was also invented and made popular by Takashi Amano.

Takashi Amano used Riccia and several other plants in ways that other aquarists had not imagined possible, until it was made practical thanks to CO2 injection, pruning, the use of bonding threads, layers of substrate, and/or preparation in dampened emersed conditions etc.

The use of high quality specialized stainless steel aquascaping tools, such as various tweezers and scissors, was also popularized by Takashi Amano. Other aquascaping tools and equipment, such as various brushes, spray bottles, mist makers, strainers, trays, cups and so on, may also be used. Aquascaping tools and aquarium maintenance tools can make planting, pruning, algae removal and various scaping easier, more enjoyable and/or efficient. Aquascapers often develop personal preferences for some of the specific tools and generally use them more than others.

A few branch styles has emerged, also from Takashi Amano, such as the iwagumi aquascape style, the ryoboku and the Wabi-Kusa. Diorama is also a style that can be either incorporated into, or onto, a nature aquarium, but diorama may also be merged with many other freshwater styles and is not exclusive to nature aquarium.

The nature aquarium jungle planted aquascape style is also a legacy from Takashi Amano. A simple wild grown jungle style was already in use earlier, but Takashi Amano evolved the jungle style. Takashi Amano included the jungle style in some of his aquascapes, fusing it with the nature aquarium style, taking the jungle style to a new level.

Related external links and references to this chapter:

Paludarium styles:

A paludarium is also known as an aquaterrarium, it is a type of vivarium that is a combination of an aquarium and a terrarium.

The plural form of paludarium (more than one paludarium), can be paludaria, or paludariums. Both options are valid, so you are free to choose which option you prefer to use.

There is also a type of paluarium that is called a riparium, that focus on the riparian zone (the riparian area).

A paludarium can be completely enclosed, or semi open. If it is made to be completely open above the aquatic section, some people call it an open paludarium, but some aquascapers may debate that and instead prefer to call it an "open scape", or a living wall aquarium, or an aquaponics setup, depending on the details of the situation.

Sometimes a paludarium may be called a waterfall aquarium, if it incorporates a waterfall, or mistfall, above the water level of the aquatic section. However, I suggest calling it a waterfall paludarium (or waterfall aquaterrarium, or weeping waterfall scape) in that case, since calling it a waterfall aquarium may lead to confusion, if you don't elaborate to explain further. This is because, there are also aquariums that may sometimes be called waterfall aquariums, without necessarily being paludariums. (For example, an aquarium that is divided into several sections and spills over from one section into another, may also be called a waterfall aquarium. An aquarium that incorporates an underwater sandfall (sand waterfall), may also be called a waterfall aquarium, since it visually resembles a waterfall. A leaking broken aquarium may also be called a waterfall aquarium, if it is refered to in a sarcastic way.)

Paludariums are often (but not always) used to provide a habitat for amhibians (frogs, newts etc.), or other semi-aquatic animals, such as crabs, or some types of reptiles.

There is both an aquatic part (sometimes including fishes) and a terrestial part with land, and/or a structured wall etc. Paludariums usually have high air humidity and often, more or less, mimic swamps. A paludarium may also act as a type of aquaponics setup, if the water from the aquatic part provides nutrients to emersed growing plants.

In modern times, automatic mist makers and sprinklers are often used to keep a paludarium wet, moist, and/or humid. In some types of modern paludariums, if kept without big animals in the terrestial part, but with lots of plants, CO2 injection may be used to increase plant growth.

Related external links and references to this chapter:

Dirted aquarium styles:

Waterlogged dirt (soil), that preferably (but not necessarily) has been mixed with a carefully selected recipe of various nutritious compounds, is placed and spread out on the bottom of the aquarium, then capped with a layer of sand, or similar material. Some aquarists use gravel, or a mix of gravel and sand, instead of only sand, but sand seems to generally work better than gravel.

The best grain size and the thickness of the cap layer is up for debate, but coarse sand is generally recommended. Fine sand may cause smothering of plant roots, but the smaller grain size also allows the cap layer to be thinner and still do its job, compared to a cap layer of coarse sand, or fine gravel. It is easier if the cap is made of sand, than of gravel, if you need to uproot plants, but want to avoid making a mess in the water. Uprooting the plants may be needed if you want to give them away, selling them, or simply moving them, as they grow and multiply.

Only using coarse gravel pebbles is not recommended as a cap, since water and dirtmix may percolate too fast between the pebbles. (Moving by trickling, or sifting, in between the empty space channels.) If pebbles are used, it is recommended to fill in most of the empty space channels, in between the pebbles, with additional sand and/or fine gravel. This will help with preventing the dirtmix and nutriets from traveling upwards too fast, and also to hinder oxygen gas O2 from traveling downwards too fast. The choice of grain size may also depend on the preferences of the species of rooted plants and the chosen species of fishes in the aquarium.

Generally, the waterlogged dirt layer is suggested to be about one inch (about 2-3 cm) thick. You can get away with a much thinner layer of waterlogged dirt, if you do not plan to keep the aquarium going for more than about a year. However, if you want most of the nutrients in the waterlogged dirt to last for several years, or maybe decades, it is better to use a thicker layer. You may also want to have a slightly thicker layer of waterlogged dirt in the back of the aquarium, compared to the front of the aquarium. This is because you are more likely to plant the largest rooted plants, that probably benefit the most from the rich nutrients, in the back of the aquarium.

Generally, the cap layer is suggested to be about two to three inches (about 5-8 cm) thick. A rule of thumb is to have a cap layer that is atleast twice as thick as the waterlogged dirt layer on the same spot. If you have chosen to make the waterlogged dirt layer thicker at the back of the aquarium, you should also make the cap layer thicker there.

A thick enough cap layer prevents excessive oxygen gas O2 in the open water column from reaching down into the dirtmix. This creates an anaerobic and anoxic environment in the dirtmix. Anoxic and anaerobic microbial life forms live the in the dirtmix. Rooted plants can use their roots to reach down and extract nutrients from the dirtmix below the sand. The layer of sand prevents excessive nutrients from leaking directly up into the water column above the sand. This prevents algae and cyano bacteria, above the sand, from directly taking advantage of the nutrients in the dirtmix.

Dirted aquarium styles are also known as dirted tanks, or the Walstad Method, named after Diana Walstad who wrote the book Ecology of the Planted Aquarium. Dirted aquarium styles have evolved over the years. The set-ups and maintenance may not completely follow how Diana Walstad used to do things long ago before/when she wrote the 1st edition of her book. Diana Walstad herself has made some modifications since then. She recently (2023) released a new 4th edition of Ecology of the Planted Aquarium.

Father Fish (Louis Foxwell) and other aquarists have made adjustments and continue to try to make improvements, while spreading their tips, personal conclusions and opinions.

Often, part of the goal of this kind of setup is to let the aquarium develop a food web and let it take care of itself. It will become like a diverse miniature eco system, a slice of nature. Fallen leaves and pieces of wood may be added to the dirted aquarium, if you aim for a biotope, or biotype, that requires it. Usually, it doesn't need much maintenance and can go for long periods of time without feeding. Fish fry and small fishes usually find lots of small organisms to eat in dirted aquariums, making it easy to raise fish fry into juveniles, without having to frequently feed them yourself.

Aquarists with dirted aquariums, that have comparatively low fish bioload, usually only top up water, to replace the water that evaporates. They normally try to avoid doing actual water changes, or only do small partial water changes sparingly. Some dirted aquarium keepers may occasionally do a waterchange, usually with rainwater, or RO/DI water, to trigger some fishes to spawn.

Dirted aquarium keepers usually prioritize enjoyment and a naturalistic stable aquarium, with less work compared to aquarists who prefer most other styles. Some aquarists keep many dirted aquariums, since each aquarium doesn't require much time, or effort, to maintain. Dirted aquarium keepers may get more time to enjoy their aquariums, when they feel like it, but mostly sit back and relax, or periodically get busy with other time demanding things in their life.

It is possible to add additional filtration, aeration and/or circulation of the water in a dirted aquarium. It is a personal choice how much technology each aquarist want to use, if any. Some dirted aquarists choose to try to avoid advanced technology and rely on nature as much as possible. This is especially the case in locations where electricity power grid is not always reliable because of frequent power outages etc. However, adding artifical light on a timer and perhaps some minimal filtration, an airstone, a heater, and/or sometimes connecting several aquariums together can be benificial depending on the situation. Connecting individual aquariums to each other into a system, if done in a good way, can lead to water quality stability benefits.

Warning! In dirted aquariums, I suggest to avoid keeping fishes that are extreme diggers, and/or burrow themselves deep into the substrate. Furthermore, if you happen to have circulating water and fine sand in the aquarium, be extra careful how you direct the water flow. The water current may move the fine sand and create danger by diminishing the thickness of the layer of fine sand above the dirtmix in certain spots, where the water current is strong. In a bad case, the water flow may excavate a deep crater in the fine sand and may even expose the dirtmix. This is not allowed to happen in a dirted aquarium with a cap layer. Breaching the cap layer in this way can potentially create a dangerous situation for the inhabitants in the aquarium and will will also cause various other problems, especially if the dirtmix is enriched with concentrated nutrients. The risks during a breach of the cap layer may be lower if instead of dirtmix, only lean potting soil is used without additional nutrient compounds in the dirt, or if such compounds are only moderately/sparingly added to the dirtmix.

Related external links and references to this chapter:

Mud/clay/earthen pond style:

Various types of manmade mud ponds have historically been used for aquaculture, agriculture, and/or water reservoirs, for thousands of years. Mud ponds are also known as clay ponds, or earthen ponds. There are also naturally formed mud ponds, that may, or may not, have been significantly modified by humans.

Mud ponds may have low visibility, mainly because of algae and stirred up dirt, mulm and mud/clay particles suspended in the water column. If there is driftwood, and/or fallen leaves in the pond, the visibility may also be affected by tannins staining the water. Tiny animals and microbes in the water may also affect visibility to see the fishes.

Koi are often grown out in mud ponds, especially in Japan, by koi fish farmers. Mud ponds are also often used by other fish farmers, either for raising fishes such as carp, tilapia, snakeheads, clarias, panga and hybrid catfishes for eating, or for growing out various tropical and subtropical ornamental fishes (including, but not limited to, goldfishes), or for recreational fishing. In the state of Florida in the USA and many countries in Asia, Africa and South America, fish farmers often use mud ponds.

Sometimes the walls of a mud pond may be lined with sandbags, probably filled with excavated clay, sand, soil and rocks from the same location where the mud pond was constructed. This helps keeping the structure of the mud pond intact longer from erosion and enables the mud pond to have a steep edge, beeing much deeper right at the edge of the mud pond, compared to a normal natural mud pond with a gradual slope. It takes up much less space of the land, for the same volume of water in the mud pond. It probably also helps making seining easiser when it is time to harvest. It probably also reduces waterloss from evaporation and ground seepage. Fishes may find it difficult to escape if the walls of the mud pond are steep, compared to naturally sloped ponds where snakeheads, and/or catfishes, may be able to crawl out. Herons and various other animals may also find it difficult to catch fishes, if they can not stand on the bottom of the mud pond.

Usually, fish farmers use various modern ponds (not mud ponds) to breed, select and observe the fishes, then after some time, as they run out of valuable space in the modern ponds, they eventually move the fishes to large inexpensive mud ponds, as the fishes grow bigger and bigger. However, fish farmers may also use modern ponds, usually in enclosures, green houses, or indoors, if it gets too cold to use the mud ponds outside during winter. (If a sheet of plastic covering over the mud pond is no longer enough, to preserve enough heat in the water, to support the fishes well being, and/or growth.)

Some people use mud ponds for their domesticated ducks, and/or other birds that enjoy water. Some people use mud ponds to store water, then use the water to water gardens, or agricultural fields.

Mud ponds can also be dedicated wildlife ponds, often without fishes. The purpose is, usually, mainly to attract and assist native amphibians, but also various other types of animals in the surroundings.

Before making a mud pond, inspect the earth soil/clay composition, the normal groundwater level fluctuations and water chemistry for the location. Make sure the location is suitable for a mud pond, before starting to build the mud pond. If it is not very suitable, it may be better to go with a modern pond style instead. If your water is good, but the earth is not, but you still want a mud pond, you may have to spend more money. Excavating a huge hole, then adding large amounts of clay from somewhere else, may get expensive.

You may prefer to "cheat" and simply add a little mud/clay into a modern pond, for the presumed benefits of mud/clay to the inhabitants. An other compromise between a mud pond and a modern pond, is to use a special type of pond liner, that is meant to work together with bentonite clay, instead of a normal pond liner.

Related external links and references to this chapter:

Modern pond styles:

There are people who keep modern ponds and tubs with water outside their home in the garden, or on a patio/balcony, or inside their home, or in a separate room/garage/warehouse/greenhouse, or simply enjoy modern ponds in lobbies, waiting rooms and public parks etc.

Modern ponds and various similar contaptions may serve a recreational, ornamental, and/or economical purpose.

Aquaculture farms often use modern ponds, vats, water barrels, and/or repurposed cement vaults (originally for body caskets), and/or swimming pools, and/or bathtubs, and/or IBC tanks, and/or granary silo parts, and/or various other modern objects that can be used to hold water (with some modification), to efficiently raise, and/or breed animals, such as fishes, amphibians, fowl, and/or invertebrates etc.

Some aquaculture farms use aquaponics systems, which can both improve water quality for the fishes and increase production of weggies.

Among home owners who want an ornamental modern pond in their garden, it is popular to make a recreational aquascaped naturalistic looking water feature with a modern pond, bog and waterfall. Usually, an irregular shaped hole is dug, then some padding is added and a pond liner is put in. The pond liner prevents water in the modern pond from leaking out into the ground. The pond liner also prevents water and dirt in the ground from entering the modern pond. Water may circulated from the modern pond up to a bog with plants, then down a waterfall, back into the pond. Sometimes, a large modern pond with fishes may also serve as a recreational swimming pond, as a replacement instead of a chlorinated swimming pool, although some people may choose to keep both on their property.

It is also possible to build a modern pond above ground level. For example, to make a DIY boxpond, a rectangular shaped DIY frame made of wood and marine plywood can be constructed, to hold the pond liner in place and hold back the water pressure from inside. When selecting the wood for a DIY boxpond, make sure there is no infestation of wood eating bugs/larvae, that may bite holes in the pond liner.

Some people may use several coatings of fiberglass with varnish and paint, instead of (or in addition to) the pond liner. There are also other types of ponds, such as concrete ponds, or brick/cement ponds, or form pressed hard plastic irregularly shaped ponds, or various tubs, or IBC tanks, or repurposed swimming pools etc. Sometimes a transparent viewing panel may be installed. Pond shops, garden centers and koi dealers usually have various different pond products to choose from.

Summer tubbing (summer tubbin') is part of the aquatic lifestyle for some aquarists with a garden, and/or other suitable space outside. Small to medium sized ponds and various tubs and buckets may be used temporarily during the warm months of the year, in some parts of the world with subtropical climate. If it is a location with tropical climate it may be possible to do tubbing outside all year long.

It is, usually, possible to breed and grow out fishes, shrimps, snails and plants outside during the summer, even if they do not tolerate the winter season. Just remember to take them inside, and/or sell them, well before winter comes. Tropical species may not tolerate the cold during chilly autumn nights, unless you keep the tub in a greenhouse, and/or use some form of heating, and/or use isolation material, and/or coverage, to keep the temperature up in the water. Small to medium sized freshwater ponds and tubs may freeze completely to the bottom during a cold winter, which even hardy subtropical fishes do not tolerate.

If you are inexperienced with ponds, but want a large pond added to your property, it is preferable to contract a highly reputable and experienced pond company, to help you choose, plan, build and install the pond. This will increase your chances of success, both short term and long term, while helping you to avoid the most common beginner mistakes, in each step of the process. Some pond companies also have optional inspection, cleaning and maintenance services available.

If the pond is constructed by a large experienced pond company, with thorough planning and preparation before starting construction, they may use lots of manpower, excavators, delivery trucks and so on, to create a big normal standard pond in a few days. A similar project would probably take months to do, with only manual labour, during free time, for a small family. Handeling tons of big rocks, especially huge boulders, may also be dangerous. Leaving it to the professionals may be safer, if the installation requires the removal/installation of huge boulders.

If there is a lake nearby, some pond owners run water from the lake through the pond and back into the lake, to help regulate the water temperature and increase water quality in the pond. However, fish eggs, fish fry and various small fishes from the pond may find their way into the lake, and vice versa. Diseases and pests may also spread into, or out of, the pond through the lake water.

Modern ponds can sometimes be designed specifically to let wildlife in and out of the pond. Such ponds can become dedicated wildlife ponds, often without fishes. The purpose is, usually, mainly to attract and assist native amphibians, but also various other types of animals in the surroundings.

Related external links and references to this chapter:

Goldfishes styles:

Goldfishes (Carassius auratus) have a long history of being selectively bred and raised in captivity. Various fancy goldfishes with different combintions of colors, body shapes, fin variants, scale variants, eye sizes, wen sizes and nasal boquettes variants, have been developed.

Common goldfishes and comet goldfishes have appearances that, more or less, may still somewhat resemble the original natural wild form, while other variants have gone more extreme. Some fancy goldfishes have balloonish eyes, ball shaped compressed bodies and various fin variants, such as multiple caudal fins, missing dorsal fin, elongated veil fins, or stubby fins. These variations often lead them to appear "cute" and swim with waggly swimming motions. The many generations of domestication of goldfishes have probably also made goldfishes generally less skittish. This is similar to the change in behaviour that other domesticated animals may show, when comparing them to their natural wild ancestors.

There are several other species in the genus Carassius, that are often "mistaken" as goldfishes. Because of the very long period of time, being kept domesticated by humans and various experimental breeding projects, it is also not impossible that there are probably several other species and various hybrid mixes, shuffled in, within the various variants of "goldfishes". There is a high risk of hybridization between goldfishes and other species in the genus Carassius.

There are many examples of goldfishes and related species in the genus Carassius becoming feral and invasive in many parts of the world.

Related external links and references to this chapter:

Undergravel filter (UGF) styles:

Undergravel filters can be spread out throughout the whole bottom of the aquarium/tub/pond, or only a part of the bottom, or in a container etc.

  • Undergravel filter with very fast down flow.

    Water is sucked down through the gravel quickly.

  • Undergravel filter with regular down flow.

    Water is sucked down through the gravel at medium speed.

  • Non flowing, or very slow flowing, undergravel filter.

    Water is not continiously flowing much, if at all, through the gravel. Muck will still continiously, but very slowly, settle and collect loosley in the gravel bed. However, during regular water changes, the gravel may quickly and easily get flushed through with aquarium water. It is a simple way to remove excessive loose muck, together with the discarded water.

  • Reverse flow undergravel filter.

    Pre-filtered water (from a canister filter etc.) is pushed upwards through the gravel bed, mimicking a natural spring. This helps to prevent fish food particles and fish excrements from getting sucked directly into the gravel bed, which sometimes may be a cause of concern with other types of undergravel filter set-ups.

Related external links and references to this chapter:

Underground cave style:

The scape is usually made to resemble a cave stereotype, often with imitations of stalactites and stalagmites. There is usually dim/low light and typically a population of blind Mexican tetras, which is the most common type of cave fish in the aquarium hobby/industry.

Related external links and references to this chapter:

DIY homemade elaborate backgrounds styles:

If you create DIY backgrounds to put inside an aquarium, or a paludarium, make sure the products are safe for aquarium use. Varnish, silicone, styrofoam, polyurethane and so on, are not all the same, they are made for varius different applications. Make sure never to use producs that have antifungal additives etc.

  • DIY living moss background style.

    Mesh, and/or coarse mattenfilter, and/or WABI-KUSA mat is usually used as a base. Put java moss, and/or similar types of plants, to grow on the base.

  • DIY natural cork bark background style.

    Pieces, or sheets, of raw natural cork bark may be siliconed inside the display/vivarium. It is popular to use cork bark above water level inside paludariums. Cork bark is usually boyant (can float in water), so if it is used to make a background inside an aquarium, or underwater in a paludarium, make sure it is securely attached to hold it down. The cork bark may alternativel be mounted in a dry box behind the enclosure, to be seen through a transparent back wall.

  • DIY sculptured styrofoam, and/or polyurethane foam style.

    Usually, covered with varius types of cement, paint and varnish coating, then siliconed inside the display/vivarium. The styro-/polyurethane foam background may alternativel be mounted in a dry box behind the enclosure, to be seen through a transparent back wall.

  • DIY real rocks background style.

    Real stones, gravel, and/or sand, siliconed inside the display/vivarium.. The real stones, gravel, and/or sand may alternativel be mounted in a dry box behind the enclosure, to be seen through a transparent back wall.

Related external links and references to this chapter:

Factory made 3D backgrounds & inserts styles:

There are several brands, of nature inspired 3D backgrounds and inserts, that are commercially produced for aquariums. Here is a short list with a few examples of such brands, and/or wholesalers of multiple brands.

Suspended styles:

  • Overgrown planted planet/ball/rock style.

  • Pandora/Avatar suspended hills/rocks style.

  • Suspended trees style.

  • Washing machine algaeball/mossball/Marimo style.

    Mimicking a saltwater jellyfish tank, but using balls of algae in freshwater, instead of jellyfish in saltwater. I'm not sure, but there may, or may not, be more than one species of freshwater algae that can be used in this way? Aegagropila linnaei is the type species for the genus Aegagropila. Unfortunately, there have been problems with invasive zebra mussels hitchiking on shipments of Marimo and there are also other legal issues. I suggest consulting someone with better up to date knowledge than me. Please do thorough research beforehand, if you intend to acquire any algaeballs/mossballs/Marimos etc.

Related external links and references to this chapter:

Bare bottomed styles:

  • Bare bottomed laboratory and experimental aquariums.

  • Bare bottomed quarantine and treatment aquariums.

  • Bare bottomed wholesaler aquariums.

  • Bare bottomed fish breeding aquariums.

  • Bare bottomed aquariums for holding and/or breeding invertebrates.

  • Bare bottomed discus aquariums.

  • Bare bottomed betta tanks.

    Fish farms and stores often (but not always) use bare bottomed holding tanks/jars/bottles for adult male bettas. These are controversial due to the often tiny tank size and sometimes prolonged stress due to seeing other males for long periods of time. Some stores use very tiny individual cups, or bottles, right next to each other. Other stores use tanks of relatively more generous size, sometimes connected to a central filtration system. They may also include ways to block the males from viewing each other, either permanently, or temporarily. Letting the male bettas sometimes view each other, for short periods of time, may give them some excitement and exercise, without prolonged stress. EU has special regulations about betta tanks.

  • Almost bare bottomed aquariums.

    Minimal amount of sand/gravel, sprinkled on the bottom.

  • Tiled bottomed aquariums.

Related external links and references to this chapter:

Plastic fintastic styles:

These are layouts that incorporate plastic decorations. They may be especially popular among chidren, but some adults also enjoy them.

Additional related external links and references to this chapter:

Freshwater invertebrates styles:

Invertebrates that are commonly kept in freshwater aquariums are mainly various crustaceans, molluscs and worms.

Related external links and references to this chapter:

Dwarf cichlids styles:

The most popular species of dwarf cichlids in the aquarium hobby/industry are originally native to Africa, or South America.

Shell dwelling cichlids from Lake Tanganyika and Lake Malawi are mostly dwarf cichlids, that in the wild inhabit empty snail shells. If they use the shells to spawn, they may also be called shell spawning cichlids. Shell dwelling cichlids, and/or shell spawning cichlids, are commonly called "shellies" in the aquarium hobby/industry.

Generally, in rivers and lakes, it is more common that dwarf cichlids use other types of substrates for spawning, such as leaves, leaf litter, rocks, driftwood, molted turtle shell pieces, or they spawn inside various types of small caves that they find, and/or digg out.

Dwarf cichlids in general, usually, protect their eggs, larvae and frees swimming fry, for some time (normally a few weeks), until the fry/juveniles have grown enough to take care of themselves, and/or until the parents have decided to spawn again.

Sardine cichlids (Cyprichromis) have adapted to open water in Lake Tanganyika and do not use a substrate to spawn, instead, the mating process happens i mid water. A female will release an egg and a male will fertilize it. Then, the female catches the fertilized egg in her mouth. Then, the female and male continue to repeat the mating process. The female then mouthbroods her eggs for a few weeks, until the fry have hatched and also passed the larval stage, so they are developed enough to swim properly on their own. In the wild, the female sardine cichlid releases her brood of fully developed fry in a rocky area, where they get to fend for themselves. When sardine cichlids are kept in aquariums, aquarists often choose to "strip" the females of their broods, before the females relese fry into the aquarium.

Dwarf cichlids are sometimes kept in community aquariums, or sometimes in specialized breeding aquariums. Appropriately chosen dither fish may be added to a breeding aquarium, if needed, together with the dwarf cichlids. The dither fish may help to prevent incidents of aggression going too far, between dwarf cichlids, by being a distraction and an alterntive aim for aggression.

Among the affordable, easily available, popular and easy to breed dwarf cichlids, in the aquarium hobby/trade, you will find: The krib (Pelvicachromis pulcher)

Related external links and references to this chapter:

"Average" sized cichlids styles:

In the aquarium hobby/industry, there are many popular genera and species of "average" sized cichlids, originally native to various streams, rivers, ponds and lakes in the wild.

"Average" sized cichlids get approximately normal (medium/large) sized as adults, compared to all adult cichlids of the world in general, their size stays somewhere in the middle. As adults they (usually) do not stay small enough to be called dwarf cichlids, but (usually) do not become huge/aggressive/boisterous enough to definitely warrant being called tankbuster cichlids, although, some are borderline and there can be individual exceptions. Cichlids usually become more aggressive during mating season, compared to how they act normally.

Some "average" sized cichlids originate from great lakes, so if you only want to know more about those, go to the chapter:
Great lake cichlids styles.

Examples of a few other popular "average" sized cichlids styles:

  • Community tank including "average" sized cichlids styles.

  • Discus (Symphysodon) styles.

  • Uaru styles.

    Focusing on one, or more, species of Uaru:
    · Uaru amphiacanthoides   (Triangle cichlid / uaru)
    · Uaru fernandezyepezi   (Panda uaru)
    · Uaru sp. "orange"

    Uaru are often kept in hardscape only tanks.
    (They generally like to eat, and/or dig up, most aquarium plants.)

  • "Severums" (Heros) styles.

    Heros are often kept in hardscape only tanks.
    (They generally like to eat, and/or dig up, most aquarium plants.)

  • Freshwater angelfishes (Pterophyllum) styles.

  • Jewel cichlids (Rubricatochromis) styles.

  • Convicts, and/or similar cichlids (Amatitlania) styles.

  • "Eartheaters" styles.

    Focusing on "eartheaters" and similar cichlids:
    · Geophagus
    · Guianacara
    · Gymnogeophagus
    · Satanoperca

  • Firemouths and related cichlids (Thorichthys) styles:

    · Thorichthys aureus   (Blue flash)
    · Thorichthys meeki   (Firemouth cichlid)
    · Thorichthys pasionis   (Blackgullet cichlid)

Related external links and references to this chapter:

Hybrid fishes styles:

There are many cross species hybrids among fishes in the aquarium hobby and fish farming industry. Some are fertile, while others are not. Some are raised for ornamental/petkeeping purposes, while others are created for food consumption, or simply experimentation.

Some cross species hybrids have presumed "known" origin, that can be verified by repeating the hybridization. Other "hybrids" are well kept trade secrets, or unknow, with various rumors and theories spreading, although these rumors may sometimes be presented as if they are facts. Some people may claim that a specific fish they see, or sell, is only a color morph of a single species, while other people may claim that the exact same fish is a cross species hybrid, with, or without, sufficient proof to back up their claims.

Sometimes local populatons of a presumed single species can have various differences within the same species, sometimes they may be called subspecies. Crossing individuals from different populations may sometimes be called hybridisation, but is usually not called cross species hybridization, unless there are special circumstanses involved.

Sometimes it is difficult to draw a clear line between species and subspecies, compared to hybrids between closely related species/subspecies, especially if they have a large natural geographical range, in the wild where they originate from. Sometimes populations have been isolated for long, or short, periods of time and gradually, natually, adapt to their environment through the generations.

Sometimes cross species hybrids are unintentionally created, either in nature, or in captivity, but many hybrids in the aquarium hobby/industry are the result of deliberate work/experiments by humans.

Some cross species hybrids are only the result from the crossing of two species. Other cross species hybrids have more than two species mixed into their mixed species origin, going back several generations of selective breeding, and/or manipulations.

Popular cross species hybrid fishes include, for example:

  • Cross species hybrid cichlids, such as flowerhorns and blood parrots.

  • Cross species hybrid catfishes, such as RTCxTSN.

Related external links and references to this chapter:

Transparent fishes styles:

Transparent, see-through fishes include, for example, pi tetra, glass bloodfin tetra, glass gobies, glass knifefish, Asiatic glassfishes and Asian glass catfishes.

There are several species of transparent fishes sharing the same, or similar, common names i the aquarium hobby/trade. It can be difficult to see the difference with an untrained eye.

Related external links and references to this chapter:

Corydoras & similar catfishes styles:

Many aquarist and average fishkeepers may have kept a few Corydoras (cory cats), and/or other armored catfishes of the family Callichthyidae, in a community aquarium. However, there are some enthusiasts with multi tank syndrome who collect and breed as many species as they can.

Some "very easy" species of Corydoras can be triggered to spawn on the tank walls, with the combination of conditioning with normal dry food and frozen food, aeration and water changes.

Some "moderately easy/difficult" species of Corydoras may require slightly more than the minimum basics. Perhaps they prefer to wait until they get live food, and/or for the barometric pressure to change during a rainstorm, and/or require large water changes with slightly cool rainwater (or a similiar substite, such as RO water, or destilled water), and/or want something more elaborate to lay the eggs on (such as some type of plant, or a spawning mop), before they are ready to start spawing in a tank.

Some "very difficult" species of Corydoras may require more details to be fulfilled, or have other different criteria as spawning triggers, perhaps related to, for example, water chemistry, water flow, water temperature, light, substrate, leaf litter, a special diet, changing seasons, and/or other requirements. It may help to look into how each species live and spawn in nature, to mimic similar conditions in captivity.

Corydoras enthusiasts, usually, find it very exhilirating and satisfying to suddenly finally "crack the code", for how to successfully breed a species that they, and/or other aquarists have been unsuccessful with, or only had very limited success rate with, for a long time.

A male Megalechis may appreciate some floating plants to incorporate into building a bubble nest for spawning, but may settle for a floating plastic lid from a bucket, or other floating objects, or something structural at the water surface, to get in the mood to start building his bubble nest.

Related external links and references to this chapter:

Plecos & similar catfishes styles:

There are several hundreds of species of plecos and various other suckermouth armoured catfishes in the family Loricariidae. They have varying levels of difficulty, regarding keeping and spawning them. The species also have extremely varying prices in the aquarium trade, depending on rarity, appearance and size. Among the affordable, easily available, popular and easy to breed Loricariidae, in the aquarium hobby/trade, you will find: Bristlenose catfish (Ancistrus sp.)

Related external links and references to this chapter:

Loaches & similar fishes styles:

Loaches are from the superfamily Cobitoidea. However, some other fishes, especially the "algae eaters" in the genus Gyrinocheilus, may sometimes also commonly be called loaches, or get mistaken as loaches.

Related external links and references to this chapter:

Barbs & danionins styles:

Barbs and danionins are, generally, lively and easy to keep shoaling/schooling fishes. Some species stay small, while others grow big. The barbs and danionins that are popular in the aquarium hobby/industry are, usually, native to East Asia.

In East Asia, danionins and small/medium sized barbs, generally, use similar life strategies in the wild, as small to medium sized tetras, generally, do in South America and Africa.

Among the affordable, easily available, popular and easy to breed danionins, in the aquarium hobby/trade, you will find: Zebra danio (Danio rerio)

Related external links and references to this chapter:

Rainbowfishes & blue eyes styles:

Various scientists and fishkeepers are not all in agreement how to group, and/or separate, the family Melanotaeniidae and possibly closely related families, and/or subfamilies. There is a mix of new and old sources on the internet and in books etc. It can be a bit complicated, but that may, perhaps, change in the future, as new scientific discoveries are made.

Unfortunately, many natural habitats in the wild are threatened in various ways. For example, sometimes the habitats are destroyed, sometimes it is deforestation, sometimes it is damming of rivers, sometimes it is invasive species, sometimes it is excessive collection for the aquarium industry, sometimes it is fishing with poison, sometimes it is pollution from agriculture/farmland. Some natural wild poulations of fishes are also threatened by hybridisation as humans move fishes about, or change the course of streams and rivers.

At the moment (November 1, 2023), according to Wikipedia EN, the family Melanotaeniidae is separated into four different subfamilies:

· Madagascar rainbowfishes (Bedotiinae)
· Rainbowfishes (Melanotaeniinae)
· Blue eyes (Pseudomugilinae)
· Sail-fin silversides (Telmatherininae)

Other sources may group and separate them in different ways, often with a family called Pseudomugilidae, instead of having the subfamily Pseudomugilinae under the family Melanotaeniidae.

Related external links and references to this chapter:

Saving endangered fishes styles:

Breeding endangered species in captivity, with the intention to preserve them, for future generations of humans to see, and/or intending to save them from extinction and perhaps releasing them back into the wild at some point, or intending to lessen the impact on wild populations from collection of wild specimens, can usually be considered to be a moral choice, but may also be lucrative in a few cases.

Some rare wild strains, or breeding strains, of a specific fish may also be in danger of disappearing from the hobby/industry. Some strains hold historical/sentimental value to many hobbyists, so some breeders also try to preserve those strains, especially if they have childhood memories of a perticular strain, or if it was a friend, and/or a highly regarded aquarist, who developed the strain.

Warning! There is a risk that various diseases, and/or pests, may spread into the wild, or other problems may happen, if captive bred/raised/kept specimens are released into the wild. Avoid releasing fishes, or other animals, or plants, from captivity without approval from the local authorities, even if they are native, or their ancestors were native.

Related external links and references to this chapter:

Outro comments:

This article is still under construction and iteration. I intend to slowly continue updating and adding more examples of freshwater styles to this article, while also iterating and adding more descriptive details, plus more related external links and references.

Do you have suggestions regarding freshwater styles, or related links, that you want me to know about, please send me an E-mail.

Are you a beginner regarding freshwater aquatics?

If so, before you decide on what style you want to try, I suggest reading my article about freshwater aquarium basics.

[ Aquaristic Articles ]


E-mail Max Strandberg